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Abstract

Modern scientific and engineering simulations track the time evolution of billions of elements. For
such large runs, storing most time steps for later analysis is not a viable strategy. It is far more efficient
to analyze the simulation data while it is still in memory. In this paper, we present a novel design
for running multiple codes in situ: using coroutines and position-independent executables we enable
cooperative multitasking between simulation and analysis, allowing the same executables to post-process
simulation output, as well as to process it on the fly, both in situ and in transit. We present Henson,1

an implementation of our design, and illustrate its versatility by tackling analysis tasks with different
computational requirements. Our design differs significantly from the existing frameworks and offers an
efficient and robust approach to integrating multiple codes on modern supercomputers. The presented
techniques can also be integrated into other in situ frameworks.

1 Introduction

Many scientific fields rely on simulations to produce models and predictions. Typical examples are astrophysics
and cosmology, climate studies, plasma physics, and neural simulations, where the number of computational
elements, for example, dark matter particles or neural synapses, reaches into the trillions. A single time
snapshot from such runs is tens of terabytes. In this regime, the traditional approach of running a CPU-
intensive simulation, saving many outputs to disk, and analyzing them later is hopelessly inefficient.

To make matters worse, while there are several HPC centers around the world that allow scientists to
obtain time allocations large enough to produce such simulations, there is virtually no way to apply for
petabytes of disk storage for their output. Therefore, a significant challenge for computational science is
how to efficiently run simulation and analysis codes in situ, without saving (most of) the data to disk. This
problem is the main motivation of our work.

Even if there was disk space, it would be impractical to save a large number of time steps — the slowdown
due to I/O would be high. At the same time, the data could be analyzed while it’s still resident in memory:
many forms of analysis produce output orders of magnitude smaller than the input — halo catalogs or
light cones in cosmological simulations; changes in average temperatures over time in climate simulations;
cumulative energy distributions for particles in plasma simulations — making it both possible and sensible to
save the results of the analysis, while either abandoning the simulation data completely, or storing only a few
snapshots.

It may seem that the supercomputers’ restrictions and the desire to share memory force simulation and
analysis codes to be tightly coupled by being compiled into a single executable. In this paper we show that
tight coupling is not required. The codes can remain separate yet execute on the same nodes. Crucially, they
can share the same memory and data without any changes to their memory management facilities.
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2 Cooperative Multitasking

Our solution depends on two ingredients: position-independent executables and coroutines.

Position-independent executables. To let multiple executables share memory, as well as to avoid
limitations of some supercomputers, such as the absence of fork on IBM BG/Q systems, we can compile our
codes as position-independent executables. The resulting binaries are both executables and dynamic libraries.

If one compiles an analysis code as a position-independent executable, one can launch it as a standalone
process to analyze a snapshot of a simulation saved on disk. But it also becomes possible to load the code
inside a different process, using the dlopen/dlsym facilities of libdl to get the address of its main. Listing 1
presents the relevant code snippet.

typedef int (* MainType )(int argc , char *argv []);
void* lib = dlopen(fn.c_str(), RTLD_LAZY );
MainType lib_main = (MainType) dlsym(lib , "main");

Listing 1: dlopen/dlsym example.

Loading simulation and analysis executables inside one process has a significant advantage. All the routines
share the same address space — there is no process isolation enforced by the operating system. Therefore,
they can exchange data by simply passing pointers to each other, without any changes to their memory
management facilities. Achieving such zero-copy regime with executables running as separate processes is
considerably more complicated.

Coroutines. Once the main functions are in memory, we need to switch control between them. It is possible
for the simulation to call the analysis code directly, as a subroutine. But this puts a restriction on the analysis,
which wouldn’t exist if we used separate processes: when returning back to the simulation, the analysis would
inevitably lose its state, both the stack and the program counter.

What we face is a classical problem with subroutines: they have a single entry point, and, when returning,
they lose their stack frame. This problem has an elegant solution. Coroutines, a generalization of subroutines,
described in detail in the first volume of Knuth’s monograph [1, Section 1.4.2], maintain their state across
invocations. Switching from one coroutine to another changes the execution context, including the stack
pointer, program counter, registers, etc. As a consequence, not only is the coroutine’s data preserved, but
when we switch back to it, the execution resumes exactly where it left off.

There are C++ libraries that provide the coroutine functionality. By default, Henson uses libcoro,2

included in its distribution, which allows us to create an independent context for each executable. The
switches between contexts happen cooperatively, when either simulation or analysis explicitly returns control
via a yield function, described in more detail in the next section.

3 Henson

We now describe a system, Henson, built on the principles of the previous section. Henson consists of three
parts: the application that controls the execution flow between the different codes, referred to as puppets
inside the application; a small C library that the puppets must link (the library wraps libcoro and provides
functions to control execution and data exchange); and auxiliary tools (as well as examples) to simplify
transition from in situ to in transit analysis regimes.

Controller. henson, the application, controls execution. The user specifies what codes to run and how to
run them in a script. A sample script appears in Listing 4. The first lines define puppets used in the code.
The text after the equals sign is interpreted as a command line: the first word is the executable, while the
rest of the symbols are parsed and passed to the main function. Once the puppets are loaded, the script
specifies how to alternate execution between them.

2http://software.schmorp.de/pkg/libcoro.html
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Puppets. Listing 2 gives an example of a puppet; it illustrates a typical time step of a simulation. After
the computation is finished, the simulation exposes its data to other puppets by calling henson_save_*, and
yields control back to henson by calling henson_yield. These functions are provided by libhenson, the C
library that all the puppets must link.

while (/* main time loop */)
{

// ... (simulation time step)
henson_save_double("redshift", z);
henson_save_array("x", &P[0]. Pos[0], sizeof(float), count , sizeof(struct particle_data ));
henson_save_array("y", &P[0]. Pos[1], sizeof(float), count , sizeof(struct particle_data ));
henson_save_array("z", &P[0]. Pos[2], sizeof(float), count , sizeof(struct particle_data ));
henson_yield ();

}

Listing 2: Time step in a cosmological simulation puppet. Particle quantities are stored in struct
particle_data. Our analysis uses only positions; we set element size to sizeof(float), while using the
size of particle_data as the stride. count is the number of particles on the local processor.

Henson provides a shared table that maps strings to values. When a puppet saves an array, it does not
actually copy any elements, but rather stores the pointer and array metadata in the table. An array stores
the address of its first element, the size of individual elements, their number, and the stride between elements;
see Listing 2 for an example.

Having read this metadata, analysis code can access the respective arrays directly. Listing 3 shows a
skeleton of the analysis code. Analysis itself may choose to yield execution to henson, for example, if its
output may need to be processed by another code.

double redshift; size_t count , dtype , stride;
float *x, *y, *z;
henson_load_double("redshift", &redshift );
henson_load_array("x", &x, &dtype , &count , &stride );
henson_load_array("y", &y, &dtype , &count , &stride );
henson_load_array("z", &z, &dtype , &count , &stride );
// analyze the data
henson_save_pointer("analysis -data", analysis_data );
henson_yield ();

Listing 3: Analysis skeleton.

Execution groups. Henson supports multiple execution groups, each specified as a separate while-loop in
the script. Listing 4 defines two execution groups, producer and consumer. When launching henson, a user
may specify on the command line how many processors to allocate to each execution group.

Henson supports multiple execution groups to allow in transit analysis, where data moves from one group
to another, running on a separate set of processors. To identify those processors, group names are helpful
inside puppets: a puppet may request an MPI inter-communicator that connects the processors of its local
execution group with those of a remote group by calling henson_get_intercomm(remote_group_name). In
Listing 4, group names (producer and consumer) are passed to send and receive puppets precisely for this
reason.

MPI. Henson initializes MPI, so puppets should not repeat the initialization individually. Similarly, each
puppet should restrict its communication to an MPI intra-communicator within its execution group. The latter
can be obtained with an explicit call to henson_get_world, but libhenson also includes MPI wrappers (built
on top of the PMPI interface). These wrappers, when running under Henson, disable MPI initialization and
transparently replace MPI_COMM_WORLD by the result of henson_get_world in all operations. These wrappers
allow the same codes to run independently or under Henson, both with a single or multiple execution groups,
with no changes.
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sim = ../../L-Gadget3/L-Gadget3 $gadget_settings(gadget -defaultx256)
tess = ./tess -w _ _ _ _ _ 0. 0. 0. $max_x (100.) $max_y (100.) $max_z (100.)
entropy = ./ entropy _ $entropy_out(entropy -256. txt)
lightcone = ./ lightcone 1 1 1 0.524 lightcone.out

send = ../ henson/tools/send --async consumer x,y,z:array t:size_t redshift:double
receive = ../ henson/tools/receive --async producer x,y,z:array t:size_t redshift:double

producer while sim:
sim
lightcone
send

consumer while receive:
receive
*tess
entropy

Listing 4: Henson script to (asynchronously) exchange data between execution groups, producer and
consumer. The two while-loops execute in parallel; send and receive puppets move data between the
processors on demand.

Data flow. Individual puppets don’t have to be simulation or analysis codes, they can also be routines that
exchange data between execution groups. Henson includes two tools, send and receive, which not only serve
as examples of such puppets, but are also useful for real applications. send looks up the names in the shared
table and sends their contents to the remote group; receive receives the remote data and inserts them into
the local table. Both tools can communicate between execution groups with different numbers of processors.

The two routines can be run in synchronous or asynchronous mode; --async flag in Listing 4 indicates the
latter. In synchronous mode, the two routines wait for each other, so each time step of the simulation is sent
over to the analysis. In the asynchronous mode, send checks if receive has requested more data, in which
case it fulfills the request. When the temporal resolution of the simulation is finer than what the analysis
needs, the asynchronous mode has the obvious advantage: simulation and analysis proceed at their own pace,
pausing to exchange data only when necessary.

The advantage of our design is that simulation and analysis don’t require any changes to accommodate
different execution regimes: simulation posts pointers to data in a shared table, analysis reads them from the
table, but each one is oblivious to what happens when they are not running. This allows other puppets (like
send and receive above) to move data between different nodes, enabling the in transit analysis, illustrated
in Listing 4. At the same time, the simulation and analysis codes require no changes to run in situ; the user
simply modifies the script to replace two execution groups by one, as in Listing 5.

world while sim:
sim
lightcone
*tess
entropy

Listing 5: In situ version of the script in Listing 4, with identical puppet definitions omitted.

4 Experiments

To evaluate Henson, we conducted a series of experiments at the National Energy Research Scientific
Computing Center (NERSC) on Edison, a Cray XC30 with 5,576 nodes, each with 24 cores (Intel Ivy Bridge
2.4 GHz) and 64 GB RAM.

We ran several N-body simulations using Gadget [2], a widely used code for modelling the evolution of
cosmic structure, which we modified to save in Henson’s data table, after every time step, several internal
variables, including particle positions and redshift, and to call henson_yield. Listing 2 shows all the necessary
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changes, copied directly from our modified version of Gadget. For reference, it takes Gadget approximately
8.5 seconds to save on disk all particle positions for a single time step, when using 4096 processors. The
simulation takes on average 0.6 seconds for a single time step using 4096 processors.

Tessellation. Most our analysis uses Voronoi tessellations. We use tess, a tessellation code that implements
the algorithm of Peterka et al. [3] In cosmology, Voronoi tessellations can be used to estimate mass density from
N-body simulations, for example, as particle mass divided by its Voronoi cell volume. After normalization,
we can treat the result as a probability density function and compute its information entropy using entropy
code.

We always run tess and entropy on the same nodes, but we try two different regimes for placing the
tess–entropy pair and the simulation. In the first case, we run all three in situ, on the same set of nodes,
with all data transfers between codes occurring by passing pointers using Henson data facilities. Because
the tess–entropy analysis of a single time step takes a lot longer than the simulation, and because we don’t
need to analyze every time step, we try a fair scheduling regime. An auxiliary puppet times how long
tess–entropy took to analyze the last time step. It then blocks analysis until the simulation has run for at
least as long. At this point it transfers control back to analysis, timing its performance.

The second regime is in transit. Simulation and tess–entropy analysis are placed into two separate
execution groups, as shown in Listing 4. In this case, the total number of processors is split evenly among
them, but one can adjust the split with a command-line parameter to henson. The simulation and analysis
communicate asynchronously using send and receive tools: the analysis requests the data from the simulation
only when it’s ready to analyze it.

Light cone. We also use a particle filtering code, lightcone, which constructs the cosmic structure as it
would be observed at a fixed space–time location. Light cones are traditionally produced by saving enough
time steps from a simulation and then stacking them in redshift shells. Doing this in situ is both more
computationally efficient and more accurate, since the resulting light cone has shells as fine as the simulation
time steps.

The analysis is simple: it requires a single pass over the data and accumulates those particles that match
a particular criterion, saving them to disk once the simulation ends its run. We run lightcone in situ with
the simulation because it requires little memory or time overhead. In this regime, less than a second is spent
on the analysis during an hour-long simulation run.

Evaluation. Figure 1a shows the results of the (fair) in situ runs, where Gadget simulates 2001 time steps.
We note that (1) Henson initialization is negligible, taking less than 25 seconds on 8192 cores; (2) the time
spent in analysis (tess and entropy) never exceeds the time in simulation, balance achieved by the fair
scheduling; and (3) more and more time steps are analyzed in the time it takes to simulate 2001 time steps,
from 213 steps using 1024 cores to 353 steps using 8192 cores — analysis scales better than the simulation.

Figure 1b shows the results of in transit runs, where half of the processors are dedicated to the simulation,
and the other half to the analysis. Again, Gadget simulates 2001 time steps. The first thing to note is that
communication on the simulation side (send time) is negligible: from 6.97 seconds for 1024 cores down to
1.60 seconds for 8192 cores. In other words, in this regime Gadget has virtually no overhead; the processors
dedicated to it spend almost all of their time simulating the universe. This makes scheduling predictable.

On the other hand, communication on the analysis side (receive time) is significant: when analysis
finishes, it returns control to receive, which signals to the send that it is ready for more data. Such a request
is processed once the simulation completes its current time step and passes control to send. The wait times
accumulate over the course of the simulation.

It may seem that in situ analysis is performing better since more time steps get analyzed. But it also takes
longer. To get a meaningful comparison of the two, we estimate how long the simulation and analysis would
run in situ if they were to analyze the same number of time steps as in transit (using the same total number
of cores). Specifically, we calculate s+ (t+ e) · (i2/i1), where s, t, and e are the in situ simulation, tessellation,
and entropy times, and i1 and i2 are the number of steps analyzed in situ and in transit, respectively. We
compare the results to the total running time of the in transit simulation (and, by construction, analysis); see
Figure 2.
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(a) In situ
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Figure 1: Gadget–tess–entropy pipeline, in situ vs. in transit. Init, Lightcone, and Send times are so small
that they are imperceptible in the plot.
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Figure 2: Simulation and analysis scaling comparison in situ vs. in transit. In situ analysis time is normalized
to match the number of steps analyzed in transit.

As the figure illustrates, despite the communication overhead, in transit analysis performs better. Although
surprising at first, there is a simple explanation: neither simulation, nor analysis scale perfectly. When
running in situ, both have to use twice as many processors as they would in transit. The higher overheads
slow the execution. But in other examples, like lightcone, in situ is more efficient. This highlights the
importance of a flexible system, like the one presented, that seamlessly supports different execution regimes.
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